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Abstract

The time-dependence of information has historically
been managed though manual procedures, typically
developed heuristically, specifying how frequently or
under what conditions aging information should be
refreshed.  In the design of Automatic Dependent
Surveillance (ADS) applications, when aircraft should
automatically broadcast state information (e.g.,
position, velocity, or intent) must be addressed more
rigorously.  To answer questions about how frequently
or under what conditions aging information should be
updated, when the cost of seeking information must be
accounted, a novel model of time-dependent
information value is developed for a class of
proceduralized decision problems, common in aviation.
The model combines elements of classic, time-invariant
information value theory, which is incapable of
modeling the relationship between information value
and information age, with estimation techniques.  The
time-dependent information value model is applied to
investigate the rate at which aircraft should broadcast
state information in an ADS environment.  Results are
presented for aircraft flying on parallel trajectories as
well as on crossing trajectories.  Results also provide
general insight into the time-dependence of information
value and its implications on information management
processes.

Introduction

A variety of new automation systems, made possible by
datalink communication and other new technologies,
will require the measurement, communication, and
display of time-varying  information.  Historically, the
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time-dependence of information has been managed
though manual procedures, typically developed
heuristically, specifying how frequently or under what
conditions aging information should be refreshed.
Automatic dependent surveillance (ADS) - aircraft
reporting state measurements or intent information to
controllers or other aircraft via datalink - has been
proposed as an enabling technology for reducing
separation requirements and increasing operational
flexibility (e.g., free flight) in both domestic and
oceanic airspace.  The cost for using datalink
communication for frequent updates necessitates a more
rigorous methodology for designing when aircraft
should automatically broadcast state information (e.g.,
position, velocity, or intent) in an ADS environment.
This paper proposes a formal measure of information
value as a quantitative foundation for making decisions
concerning when new information should be sought.

However, existing time-invariant theories of
information value are incapable of modeling the
relationship between information value and information
age.  Atkins [1] reviews a selection of relevant
literature.  To answer questions about how frequently or
under what conditions aging information should be
updated, when the cost of seeking information must be
accounted, a novel model of time-dependent
information value is developed for proceduralized
decision problems, common in aviation.  The model
combines elements of classic, time-invariant
information value theory with estimation techniques to
model the effect of time.  Proceduralized decision
problems are characterized by an established procedure
or rule that specifies the correct decision or action as a
function of a set of relevant state variables.  The
decision maker's task, therefore, is to estimate these
state variables; poor state estimates may result in the
decision maker choosing a decision that is incorrect
according to the procedure.  Information is valued by its
effect on the decision maker's ability to estimate the
relevant state variables, measured in the context of the
proceduralized decision problem.
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The time-dependent information value model is used to
investigate when aircraft should broadcast state
information in an Automatic Dependent Surveillance
(ADS) environment, for two encounter geometries.  The
model is used to determine the optimal number and
timing of measurements when two aircraft are on
crossing trajectories, and the optimal periodic update
rate when two aircraft are on parallel trajectories.

Time-Dependent Information Value

This section outlines a novel model for describing the
time-dependence of information value.  Atkins [1]
presents a more thorough development.

Proceduralized Decision Problems

This paper considers proceduralized decision problems,
a class prevalent in aviation, in which an established
procedure or rule specifies the correct decision or action
as a function of one or more relevant state variables.
Decision problems for which a pilot is required to obey
a Federal Aviation Administration (FAA) regulation or
airline operating procedure belong to this class.

The procedure specifies, for each point in the space of
relevant state variables, which of a set of possible
actions is correct.  The number of actions between
which the decision maker must choose is typically
small and, therefore, each of the possible actions is
appropriate for a set of points in the state space.  The
points in the state space for which the procedure calls
for a particular action comprise a region.  Threshold
surfaces are the boundaries around these regions.  Note
that the correct action does not depend on where the
state vector lies within a region.

The decision maker's task in a proceduralized decision
problem is to identify the region in which the state lies
(or will lie at a future time of interest).  This paper
assumes that, if the state variables are known
accurately, all decision makers will choose the action
called for by the procedure.  However, uncertainty with
respect to the state variables may cause the decision
maker to choose an incorrect action.

Separation of Estimation and Context

The solution of a proceduralized decision problem is
found by solving an estimation problem - by identifying
the region of the state space in which the state vector
lies.  To measure the value of new information to a
proceduralized decision problem requires first
understanding how the new information will affect the
solution to the estimation problem and, second, how

that change in the knowledge about the state will affect
the decision outcome.

Figure 1 models the steps in solving a proceduralized
decision problem.  The process of selecting an action a,
given the information I, is separated into two cascaded
steps: constructing a model f Ix  of the relevant states

from the information, and using that model to select an
action.  Note that Shannon's [2] information theory and
estimation theory [3] are concerned with the sensitivity
of the state model f Ix  to the information I.

Figure 1. Separation of proceduralized decision
problems into cascaded state estimation
and decision selection.

Classic information value theory [4, 5] measures the
impact of receiving information directly on the cost that
results from a decision.  By measuring the sensitivity of
the cost C to the information I, the classic definition of
information value obscures the estimation process,
which is central to proceduralized decision-making.
Therefore a different metric is introduced to more
directly measure the impact of information on the goal
of improving the decision maker's knowledge about the
relevant state variables.

Information value is interpreted as the effect of
information on the ability to model the relevant state
variables (i.e., the sensitivity of the model f Ix  to the

information I), measured in the context of the
proceduralized decision problem.  The value which a
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piece of information has to the decision maker is
defined as the change in the probability that the
decision maker will choose an incorrect decision,
weighted by the difference in the costs for the correct
and incorrect decisions.  Note that, since the decision
maker is constrained to operate within the procedure, if
the procedure is bad (i.e., non-optimal in a minimum
cost sense), classic information value theory may assign
negative value to information, even though the
information reveals the true state of the world.  The
current approach will value this information in the
context of the bad procedure (i.e., how the information
helps the decision maker choose the decision prescribed
by the procedure).

The next section introduces a general model of the
decision maker's knowledge about a set of state
variables, in relation to the threshold surfaces, including
the effects of time and new information on this
knowledge.  The following sections model the context
within which information is valued, and apply these
ideas to define the information value metric.

Uncertainty and Uncertainty Significance

Knowledge about a set of relevant state variables x,
given the available information I, is modeled by a
conditional joint probability density function (PDF)
f Ix , describing the relative probabilities that the state

vector will take on each of the feasible values.  This
approach allows the uncertainty as well as the state
estimate to influence the decision.  The probability that
the state x is in region ri, denoted P[x ∈ ri], equals the
integral under the PDF, over all x in the region ri.

The state model having a large uncertainty will not
necessarily affect the outcome of a proceduralized
decision problem.  Figure 2 shows three possible
models for a single state variable x, in relation to a
proceduralized decision threshold θ .  The threshold
defines two regions: x < θ  and x > θ.  Although the
standard deviations of the PDFs in parts a and b are
equal, in b there is no uncertainty concerning whether
the state is greater or less than the threshold θ.
Although the standard deviation of the PDF in c is
smaller than that in a, the two state models exhibit
similar uncertainty concerning whether the state is
greater or less than the threshold.  These two
comparisons illustrate how the significance of state
model uncertainty to a proceduralized decision problem
depends on both the magnitude of the uncertainty and
the proximity of the expected state to the threshold.

Therefore, rather than considering the magnitude of the
u n ce r t ain ty , a m e as u r e of how s i g n if ica n t  that

uncertainty is in the context of the proceduralized
decision problem is required.  State model uncertainty
is significant to the outcome of a proceduralized
decision problem when the region in which the state lies
is not known with confidence.
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Figure 2. The difference between the magnitude
and the significance of uncertainty

Modeling Time-Dependence

A measurement describes the condition of a state
variable at the time the measurement was taken.  As the
measurement ages, it less accurately reveals the current
or future condition of the state.  Shortly after a
measurement, the decision maker is confident that the
state lies within a narrow range.  However, when the
state is predicted further into the future, the decision
maker is equally confident only that the state lies within
a much broader range.  Therefore, to maintain the
situation (i.e., state) awareness necessary to make
effective procedural decisions, the decision maker must
receive repeated observations of the state.  Figure 3
illustrates monotonically increasing uncertainty in state
models predicted at various times after a perfect
measurement was taken, as well as the effect of a new
measurement.  New information conditionally modifies
the a priori state model, both adjusting the expected
state and reducing the uncertainty.
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Figure 3.  Time-dependence of the state model.

To forecast how the state may evolve in the future
requires a model of the state dynamics; the rate at which
uncertainty increases depends on this model.  If the state
dynamics and the external forces acting on the state are
known deterministically, the future state trajectory could
be predicted without any expected error.  Since they are
not, a random process is used to model the future state
trajectory.  The trajectory which the state actually follows
will be one sample realization of the random process [6,
7].

Modeling Contextual Dependence

Figure 1 separated the process of solving a
proceduralized decision problem into two cascaded steps
- modeling state variables and applying a proceduralized
decision rule.  This separation revealed the value of
information as its effect on the ability to model the state
variables, measured in the context of the proceduralized
decision problem (i.e., how improvements in the state
model affect the likelihood that the decision maker will
select the action that is called for by the procedure, and
the relative costs of correct and incorrect decisions).  The
previous two sections have introduced a time-dependent
model for the state variables.  This section models the
context within which information is valued.  The
following section formally defines the information value
metric.

Payoff Matrix and Penalty Matrix

A payoff matrix is used to describe the context within
which information is valued.  Consider a proceduralized

decision problem in which a decision maker must choose
between  M decisions {a1, a2, ..., aM}.  Threshold surfaces,
defined by the procedure, divide the space of relevant
state variables into N regions {r1, r2, ..., rN}.  The outcome
of decision aj, denoted {aj, ri}, is the consequence of
choosing action aj when the state is in region ri.  The
payoff matrix assigns a cost Kij to every possible outcome
{aj, ri}.  For example, K21 is the cost of choosing a1 when
the state is in region r2.  In general, the elements of the
payoff matrix will be time-varying, the implication of
which will be explored in later sections.

Assume that the procedure is optimal with respect to
minimizing cost.  The correct decision for a particular
region (i.e., the decision called for by the procedure) is
the decision that yields the minimum cost that is
achievable when the state lies in that region.  When the
state is in region ri, aj is the correct decision if Kij

= min
k Kik, and is incorrect if there exists another possible

decision ak for which Kik < Kij.   Define Ki
* to be the

minimum cost that is achievable when the state is in
region ri (i.e., min

j Kij).  The minimum costs are generally

not equal (e.g., K1
* ≠ K2

*), implying the state being in one
region of the state space is inherently more costly than it
being in the other.
The penalty for a decision outcome {aj, ri} is the amount
by which the cost for that decision outcome exceeds the
cost for the outcome of the correct decision (i.e., Kij -
Ki

*).  Since incorrect decisions are caused by uncertainty
in the state model, the penalty is the cost of uncertainty.
The penalty matrix gives the penalties for each possible
decision outcome (i.e., every combination of decision
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and region).  Table 1 shows the penalty matrix for the
case M = 3, N = 3, and assuming ai is the correct action
when the state is in region ri.  For example, when x ∈ r1,
the penalty for choosing action a2 (an incorrect decision)
rather than a1 (the correct decision) is K12 - K11.

Table 1. Penalty matrix.

M  decisionsN
regions a = a1 a = a2 a = a3

x ∈ r1 0 K12 – K11 K13 – K11

x ∈ r2 K21 – K22 0 K23 – K22

x ∈ r3 K31 – K33 K32 – K33 0

Decision Model

In general, the decision maker will select his decision
based on the procedure, the probabilities P[x ∈ ri] that the
state is in each of the regions, and costs for each of the
possible decision outcomes (i.e., the payoff matrix).
Since it is desirable to not limit the definition of
information value to a particular decision policy, such as
minimizing the expected cost, the decision is modeled by
defining the probabilities P[a=aj |  I ] that the decision
maker will choose each of the possible decisions.  How
the probabilities are determined is application specific,
and will be illustrated in the case study.

Expected Cost and Expected Uncertainty Cost

The expected decision cost, CI, is the cost that is
expected to result from the decision problem, where the
expectation is over the region in which the state lies and
the decisions which may be chosen by the decision
maker.

C I a a I r I K
j

M

j i

i

N

ij= =





∈[ ]
= =
∑ ∑P P

1 1

x (1)

Consider the cost that is expected to result when P[a=a1]
= 1 and N = 2.

C I r I K r I K= ∈[ ] + ∈[ ]P Px x1 11 2 21 (2)

Let a1 be the correct decision when the state is in region
r1, which implies K11 < K1j for all j ≠ 1.  Also let K11 > K21,
which would occur if the state being in region r1 is
inherently more costly than it being in region r2.  Assume
P[x ∈ r1 | I] = P[x ∈ r2 |  I] = 0.5; the a priori expected
decision cost equals 0.5 K 11 + 0.5 K21.  Assume new
information I2 reveals that the state lies in region r1 (i.e.,
P[x ∈ r1 | I2, I] = 1) and, therefore, the original decision a1

is correct.  After receiving this new information, the
expected decision cost equals K11.  Although the new
information reduces the uncertainty in the state model, it
increases the expected decision cost.  Therefore, expected
decision cost is not a useful measure of the consequence
of state model uncertainty on a proceduralized decision
problem.

The role of new information is to increase the likelihood
that the decision maker will choose the correct decision,
by improving his ability to model the relevant state
variables.  Therefore, the fundamental quantity on which
information value should be defined is the consequence
of uncertainty in the state model, measured in the context
of the proceduralized decision problem.  The concept of
expected uncertainty cost is introduced as a measure of
the consequence of state model uncertainty on a
proceduralized decision problem.

The expected uncertainty cost, RI, is the penalty that is
expected to result from the decision problem.

R I a a I r I K Kj i

i

N

j

M

ij i= =





∈[ ] −( )
==

∗∑∑P P x
11

(3)

The penalty is the unnecessary cost which results because
the decision is incorrect.  The expected uncertainty cost
is interpreted as the amount by which the cost is expected
to exceed the minimum achievable cost, because the
uncertainty in the model of the state may cause the
decision maker to choose an incorrect decision.  Notice
that the expression for the expected uncertainty cost (3) is
equivalent to that for the expected decision cost (1) with
the cost of the decision outcome replaced by the penalty.

Definition of Information Value

Given initially available information I1, the model of the
relevant state variables is f Ix 1

 and the a priori expected

uncertainty cost is RI1.  Given new information I2, the a
posteriori expected uncertainty cost becomes R(I2, I1).
Note that receiving the new information may cause the
decision maker to choose a different decision from that
which he would have chosen with only the original
information.  The value of information I2 is defined to be
the magnitude of the change in the expected uncertainty

cost, R I R I I1 2 1− ( ), .

The absolute value function is included to positively
value all changes in expected uncertainty cost.
Information should have positive value when it allows
the state to be estimated more accurately, and that
improvement in the state model is significant to the
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Figure 4. The effect of a measurement at time t2 taking on a particular value x2, on the state model at time t3.

proceduralized decision problem (i.e., increases the
likelihood that the correct decision will be chosen).  By
more accurately revealing the true state of the world,
additional information is generally expected to reduce the
expected uncertainty cost.  However, if the true state is
closer to the threshold between two regions than
predicted by the a priori model, new information may
increase the expected uncertainty cost.  A positive value
is attributed to information that increases the expected
uncertainty cost because it reveals: (1) the a priori state
model was misleadingly confident about how well the
region in which the state lies is known, (2) the larger
uncertainty should be taken into account when the
decision is chosen, and (3) additional information should
be sought to reduce the expected uncertainty cost.

Often, the decision whether or not to seek the new
information must be made prior to knowing the content
of the information.  Figure 4 illustrates the effect of one
possible measurement at time t2 on the model of a state
variable at time t3.  The expected information value of a
measurement taken at time t2, V , is defined as the
expectation over the feasible measurements of the values
conditioned on those measurements being received.

V I t f R I R I I II I

I

1 2 1 2 1 2
2 1

2

, ,( ) = − ( )∫ d (4)

The dependence of V on I1 and t2 is shown explicitly, as a
reminder that information value depends on the decision
maker's a priori knowledge and the time at which the
information is measured.  The value of information also
depends on the model of the state dynamics.

Aircraft on Crossing Trajectories

This section generalizes the time-dependent information
value definition to measure the total value of multiple
new measurements, and studies when new measurements
should be taken to support the problem of predicting
whether or not a conflict will occur between two aircraft
on crossing trajectories.   Several assumptions about the
encounter geometry are made to simplify the necessary
computations.  Assume the nominal trajectories of two
aircraft, A and B, intersect at a right angle, and that the
aircraft will closely follow their nominal trajectories (i.e.,
will not deviate laterally or in altitude).  Aircraft A's
along-track position is measured at time t1, with a known
expected error, and its speed is modeled as an integrated,
first-order Markov process [3].  The standard deviation of
aircraft A's along-track position after 60 minutes, without
an intermediate measurement, is 25 miles.  The position
and speed of aircraft B are known accurately at time t1,
and its speed is constant throughout the encounter.  In
this example, a conflict occurs if the separation between
the aircraft is less than 5 miles at any time during the
encounter; the a priori expected miss distance is 0 miles
at time t3.  t3 - t1 = 60 minutes, in this example.  Given an
encounter geometry and a description of the uncertainties
about the aircraft trajectories, several methods for
calculating the probability that a conflict will occur are
available in the literature.

Collective Expected Information Value of Multiple
Measurements

When multiple new measurements are available, the total
value of different measurement schedules (i.e., the
number of measurements and the times at which they are
taken) must be compared.  The information value
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definition introduced in the previous section may be
generalized to calculate the collective expected
information value of multiple new measurements.  This
will be shown for two measurements, and extension to
more than two measurements should be apparent.  Rather
than a single new measurement being taken at a time t2,
assume that two new measurements will be taken at times
ta and tb.

Figure 5. Decision tree for the decision problem at
time t1.

The cost J(t) for alerting at time t represents the cost for
an avoidance maneuver initiated at that time.  Assume

J t t( ) = + ( )$ $50 100 60

2
.  Figure 5 shows the decision tree

for the decision problem with which the controller is
confronted at time t1; the decision to either continue
monitoring or intervene is made at times t1, ta, and tb,
when new information is received.  Table 2 gives the
expected uncertainty costs for the two possible decisions,
at each of the times when a decision is made, assuming a
minimum expected cost decision rule.  P[C ] is the
probability a conflict will occur.

Table 2. Expected uncertainty costs.

Alert No Alert

t1 K t x1 11( ) − [ ]



P C K t K t C xa( ) − ( )( ) [ ]1 1P

ta K t xa a( ) − [ ]



1 P C K t K t C xb a a( ) − ( )( ) [ ]P

tb K t xb b( ) − [ ]



1 P C K t K t C xb b3( ) − ( )( ) [ ]P

Assume the controller decides to continue monitoring at
time t1.  The collective expected value of new
measurements taken at times ta and tb, calculated at time
t1, equals the expectation (over the possible
measurements) of the value of the measurement at time ta

(to the decision at ta) plus the expectation (over the
possible measurements at time tb, given the measurement
received at time ta), of the value of the two new
measurements (to the decision at tb), where value is
defined as the change in the expected uncertainty cost.
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∫∫ R d

d

(5)

The plan for when the first measurement should be taken
must consider the opportunity for taking a second
measurement.  Therefore, when the first measurement
should be taken can be found by determining the times ta

and tb whose combination maximizes the collective
expected information value. However, Equation (5)
calculates the total value that is expected prior to
receiving either of the new measurements.  After the first
new measurement is received, the expected value of the
second measurement, conditioned on the first, may
change.  Therefore, whether or when to take the second
measurement must be reevaluated after the first
measurement is received.

Results

Figure 6 plots the collective expected information value
as a function of the times at which two new
measurements are taken.  If a single new measurement is
taken, its expected value is largest when it is taken at 48
minutes.  Taking the measurement at this time is the best
compromise between the ability to make the correct
decision, and the benefit for making the correct decision
at an early time.

If two new measurements are taken, the collective
expected information value is largest when one
measurement is taken at 22 minutes and the other at 52
minutes.  The expected value of the first measurement
results because there is some chance that the
measurement will allow the correct decision to be made
at an early time.  If the correct decision is to alert, the
cost of the avoidance maneuver will be less than if the
maneuver were initiated at a later time.  Alternatively, if
the first measurement reveals that the correct decision is
to not alert, then the information cost of the second
measurement may be avoided.  Notice from Figure 6 that
the expected value of a measurement taken at 52 minutes
is fairly independent of whether or not a measurement is
taken at 22 minutes.  This occurs because, if the content
of the first measurement is such that a second
measurement is still necessary, the first measurement
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does not significantly reduce the uncertainty that exists
before the second measurement is received.
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Figure 6. Collective Expected Information Value
for two new measurements.
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Equation (5) may be further generalized to calculate the
collective expected value of more than two
measurements.  Figure 7 shows the optimal times at

which to take 1, 2, 3, or 4 new measurements; Figure 8
shows the collective expected information value for
measurements taken at those times.  For 3 and 4 new
measurements, the intervals between the optimal
measurement times decrease as the time remaining until
the possible conflict decreases.  However, the collective
expected information value exhibits diminishing returns,
as the number of measurements is increased.  An
additional measurement should be sought only if the
resulting increase in the collective information value is
greater than the cost of the measurement.  Therefore, this
approach may be used to determine how many new
measurements should be taken, in addition to when those
measurements should be taken, by calculating the net
value for one, two, three, and so on, new measurements,
where net value is defined as the collective expected
information value minus the total information cost.

Note that the expectations underlying the results in
Figures 7 and 8 are calculated prior to receiving any of
the new measurements (i.e., at time t1).  After the first
new measurement is received, the expected values of the
future measurements, and the times at which future
measurements have maximum expected value, may
change.  Given a new piece of information, the plan for
what information should be sought in the future must be
re-calculated, using the same method.  The resulting
computational demand makes this approach more
applicable as an off-line analysis tool, than as an on-line
algorithm (i.e., programmed to run in real-time on-board
aircraft or in ATC computers).

Aircraft on Parallel Tracks

This section applies the time-dependent information
value model to study the optimal tradeoff between the
cost of information and the cost of uncertainty, when
measurements are taken periodically.  Consider two
aircraft, A and B, flying at equal speeds on parallel
oceanic tracks (or landing on parallel runways).  A
controller monitors the aircraft separation and intervenes
if a situation which would otherwise result in a conflict
arises.  Since a conflict may occur at any time, the
decision problem is continuous.  However the controller's
predictions for the future trajectories of the aircraft only
change when new information is received.  Therefore, if
upon receiving a measurement the controller decides to
continue monitoring, the controller will not intervene
before receiving the next measurement.

To support monitoring or continuous control tasks,
information must be repeatedly updated.  In general, the
optimal intervals between multiple new measurements
vary as the context changes, as shown in the previous
section.  In the present problem, measurements are taken
at equal intervals because, as long as the aircraft remain
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on their nominal parallel trajectories, the context in
which information is valued remains constant; let ∆t be
the time between subsequent measurements.  Note that if
one of the aircraft deviates from its nominal path, the
new encounter geometry resembles the problem studied
in the previous section.  Therefore, the objective of
taking or communicating periodic measurements is to
detect an aircraft “blunder.”  The update rate is chosen to
balance the cost of latency in the detection against the
cost of the measurements.

Information Cost

If there is zero cost for seeking or using information, then
information should be updated continuously.  When there
is a cost for seeking or using information, the benefit of
the additional information must be balanced against that
cost.  In the previous sections, the value of information
was defined as the difference between the expected
uncertainty costs, with and without the information.  To
compare different pieces of information, the cost without
the information was used as a consistent baseline from
which to define the measure of value.  In the continuous
decision problem, this baseline, which would have the
physical interpretation of never receiving new
information, does not produce a meaningful measure of
value.  Therefore, the cost itself, where cost now includes
both the uncertainty cost R and the cost of information
CI, is used to compare possible information update rates.
Note that the cost of information must be measured in the
same units as the cost of uncertainty (i.e., the units of the
payoff matrix).

C C RT I= + (6)

Since the decision problem is continuous, the average
cost per unit of time will be used to compare various
update rates.  Superscripts are used to indicate the period
of time over which a cost has accumulated: ∆t denotes a
cost which has accumulated over a single measurement
interval, and dt denotes the average rate at which cost
accumulates.

C t
I
∆  is the cost for a single measurement.  C tdt

I ∆( ) is the
average cost of information per unit of time.

C t
C

t
dt

t

I
I∆
∆

∆

( ) = (7)

Expected Uncertainty Cost for Continuous Decision
Problems

To study the periodic update rate, assume the aircraft
remain on their nominal trajectories.  If the aircraft
deviate onto crossing paths, the future information

requirements can be determined as in the previous
section.  Only a single row of the payoff matrix,
corresponding to the decision to not intervene, is
required.  Two outcomes are feasible - either a conflict
occurs or a conflict does not occur, defined by the
parameter θ.  Let the rates at which cost accrues for these
decision outcomes be: K 11 = $50/minute and K 12 =
$0/minute, respectively.  Note that, since the decision is
continuous, the payoff matrix must be expressed in terms
of the rate at which cost accumulates.

R(τ), the instantaneous rate at which expected uncertainty
cost accumulates, for the decision to continue
monitoring, equals the probability that the aircraft
separation is less than the required separation θ times the
penalty K12 - K11 = $50/minute.  τ is the time since the last
measurement, and θ = 10 nautical miles, in this example.
The $50/minute penalty for the controller failing to
intervene when a conflict will occur, due to uncertainty
in the state model, represents the added cost to the
aircraft for delaying the necessary avoidance maneuver
(e.g., increased fuel-burn of a more aggressive
maneuver).

A probabilistic model for the aircraft trajectories is
required.  Assume the aircraft are nominally separated by
50 nautical miles, and their future cross-track positions
are described by a twice-integrated, first-order Markov
process [3].  This model exhibits exponentially growing
uncertainty in aircraft separation as information age
increases; a parameter σ, expressed in nautical miles per
minute2, determines the rate at which the uncertainty in
the state grows.  Although a variety of other models
could be suggested and studied at length, this model
serves the objective of this example - to study the general
properties of the relationship between information cost
and update rate.

The cumulative expected uncertainty cost R t∆  represents
the cost that is expected to accumulate over a single
measurement interval due to exposure to a conflict
situation, and equals the integral of R(τ) from τ = 0 to τ =

∆t.  Define Rdt  to be the average cumulative expected
uncertainty cost over the measurement interval.

R t
R t

t t
R ddt

t t

∆
∆

∆ ∆

∆ ∆

( ) = ( )
= ( )∫

1

0

τ τ (8)

Optimal Measurement Interval

Figure 9 plots the per-unit-time costs from Equation (6),
as functions of the measurement interval, for the case
C t

I
∆ = $5, K 12 = $50/minute, and σ = 10 nautical

miles/minute2.  When ∆ t is small, the fixed cost for a
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measurement is assessed over a short time, resulting in a
high average (per unit of time) information cost.
However, the frequent measurements achieve a small
average cumulative expected uncertainty cost. When ∆t
is large, the average cost of information is small, while
the average cumulative expected uncertainty cost is high.
The optimal (i.e., minimum total cost) measurement
interval, denoted by ∆t*, is a tradeoff between the cost of
information and the expected cost of uncertainty.  For the
assumptions made in Figure 9, the optimal measurement
interval is approximately 4 minutes.  The corresponding
minimum average total cost for monitoring and
maintaining separation between aircraft which are
following parallel tracks separated by 50 nautical miles is
approximately $1.50/minute.  Parametric studies may be
used to identify the assumptions to which this result is
most sensitive, allowing effort to be concentrated on
accurately identifying those parameters.
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�t�

C
dt
I

Cdt
T

Rdt

Cdt
T

�

Figure 9. The optimal measurement interval trades
off between information and expected
uncertainty costs.

By plotting the average total cost Cdt
T  versus the

measurement interval ∆ t for four values of the per-
measurement cost of information C t

I
∆ , Figure 10

illustrates the sensitivity of the optimal measurement
interval to the cost of information.  Increasing C t

I
∆  makes

information more expensive relative to the average
cumulative expected uncertainty cost.  Therefore, both
the optimal measurement interval ∆t* and the minimum

average total cost Cdt
T
∗
 increase (i.e., measurements

should be taken less frequently) as C t
I
∆  increases.

Figure 11 shows the sensitivity of the optimal
measurement interval to the penalty for delaying
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Figure 10. Sensitivity of the optimal measurement
interval to the per-measurement cost of
information.
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Figure 11. Sensitivity of the optimal measurement
interval to the penalty for delaying
intervention.

necessary intervention, by plotting the average total cost
Cdt

T  versus the measurement interval ∆t, for four values
of K12.  For larger values of K12, the cumulative expected
uncertainty cost increases faster.  Therefore, increasing
K12 decreases the optimal measurement interval, because
information is less expensive relative to the cumulative
expected uncertainty cost, making more frequent
information updates cost effective.  The optimal
measurement interval exhibits similar sensitivity to the
state dynamics model parameter σ, which is used to vary

the dependence of R t∆  on ∆t.  As σ increases, the optimal
measurement interval decreases because the relative cost
of information decreases.
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Conclusions

To answer questions about when information should be
measured, communicated, or displayed, a novel model of
time-dependent information value was developed for a
class of proceduralized decision problems.
Proceduralized decision problems require the decision
maker to estimate a set of relevant state variables, in the
context of proceduralized decision thresholds.  The new
information value metric directly measures the impact of
information on the decision maker's ability to estimate
these state variables.  The metric is based on the expected
cost of the uncertainty in the state model - the amount by
which the cost resulting from the decision will exceed the
minimum achievable cost, due to the uncertainty causing
the decision maker to choose a decision that is incorrect
according to the procedure.

The model of time-dependent information value was used
to determine how many measurements should be taken,
and at what times, to support a controller monitoring and
maintaining separation between two aircraft on
intersecting trajectories.  The time intervals between
optimally spaced measurements were shown to decrease
as the time remaining until the possible conflict
decreases, and the cumulative information value,
expected prior to receiving any of the measurements,
exhibited diminishing returns with an increasing number
of measurements.  Since new information may change
the expected value of future information, how many and
when subsequent measurements should be taken must be
re-planned.  The computational demand of re-calculating
when to take future measurements each time a
measurement is received makes the approach best suited
as an off-line analysis/design tool.

The time-dependent information value model was also
used to identify the optimal periodic rate at which two
aircraft flying along parallel tracks should broadcast
position measurements.  The solution trades off between
the expected cost of uncertainty and the cost of
information.  Parametric studies were used to identify the
sensitivity of the results to the assumptions.

More than providing specific results, these examples
demonstrate the utility of the proposed time-dependent
information value model as a tool for designing
processes, both manual procedures and automatic
systems, for managing time-dependent information.
Proceduralized decision problems were successfully
modeled as estimation problems by defining regions in
the state space whose boundaries are significant to the
procedure.  The expected uncertainty cost was shown to
be a useful basis for measuring information value for this
class of decision problems.  Finally, the time-dependence

of the information and the decision problem were
incorporated using estimation techniques.
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